Bacillus anthracis Antimicrobials Derived from Inhibitors of Mammalian Serine-Threonine Kinases

Jimmy D. Ballard, Ph.D.
PHF Presidential Professor
The Department of Microbiology and Immunology
The University of Oklahoma Health Sciences Center

Bacillus anthracis - Host Interactions

WRCE B. anthracis Investigators:

- Theresa Koehler, University of Texas Houston
- Jimmy Ballard, University of Oklahoma HSC
- Steven Blanke, University of Illinois
- C. Rick Lyons, University of New Mexico HSC

NIH/ Regional Centers for Excellence-Biodefense and Emerging Infectious Diseases
U54 AI057156-01

Steps in Pathogenesis of Inhalation Anthrax

MAP Kinase Regulation of Spore/Macrophage Interaction

Examples of Protein Kinase Inhibitors

Noble et al. (2004) Protein Kinase Inhibitors: Insights into Drug Design from Structure. *Science*, 303, 1800-1804

Impact of MAPK Inhibitors on Survival of *B. anthracis* within Macrophages

Impact of c-Jun N-Terminal Kinase (JNK) Inhibitor on *B. anthracis* Growth

Initial Questions

- 1. Does the JNK Inhibitor alter protein phosphorylation in *B. anthracis*?
- 2. Is *B. anthracis* sensitive to other kinase inhibitors?
- 3. What is the impact of the JNK inhibitor on the growth of other microorganisms?

p-Threonine Profiles

Impact of Kinase Inhibitors on *B. anthracis* Growth

Compound	Known Eukaryotic	Inhibitory Doses	B. anthracis	Organism	MIC
	Targets		growth	Escherichia coli 25922	1
PD98059	MEK1,2	IC ₅₀	+	Salmonella typhimurium	1
SB203580	p38	IC ₅₀ 34 nM	+	Enterococcus faecalis	1
JNK-II inhibitor	JNK1,2,3	IC ₅₀ 40 nM-90	_	Listeria monocytogenes]
		nM	_	Bacillus subtilis	320 μN
Bisindolylmaleimide I	ΡΚCα,β,δε	IC ₅₀ 8.4 nM-132	+	Pseudomonas aeruginosa]
		nM		Bacillus cereus	160 μN
H-89	PKA, MLCK, CaMKin	K_i 50 nM-40 μ M	_	Staphylococcus epidermidis	. 1
	II, PKC, CKI			Staphylococcus aureus]
KN-93	CaM Kinase	K _i 370 nM	+	Candida albicans	1
ML-7	MLCK, PKA, PKC	K _i 300 nM-42	+		μ M/1
		μM		Bacillus anthracis Sterne 7702	160 µN
Protein Kinase G Inh.	PKG, PKA	$K_i 85 \mu M-550 \mu M$	+	Streptococcus gordonii	. 1
Staurosporine	PKA, PKC, PKG,	IC ₅₀ 0.7 nM-20	+	Streptococcus pyogenes]
•	MLCK, CaM Kinase	nM		Streptococcus pneumoniae]

Organism	MIC/MBC
Escherichia coli 25922	N/N
Salmonella typhimurium	N/N
Enterococcus faecalis	N/N
Listeria monocytogenes	N/N
Bacillus subtilis	320 μΜ/320 μΜ
Pseudomonas aeruginosa	N/N
Bacillus cereus	160 μΜ/160 μΜ
Staphylococcus epidermidis	N/N
Staphylococcus aureus	N/N
Candida albicans	1280
	μ M /1280 μ M
Bacillus anthracis Sterne 7702	160 μΜ/160 μΜ
Streptococcus gordonii	N/N
Streptococcus pyogenes	N/N
Streptococcus pneumoniae	N/N

- Members of the *Bacillus* genus are sensitive to the JNK inhibitor
- Other kinase inhibitors did not have similar effects

What are the targets of the JNK-inhibitor?

Resistance to JNK Inhibitor

Multiple and/or redundant targets?

B. anthracis mutants resistant to JNK inhibitor II

The Kinome of *B. anthracis*

Analysis of B. anthracis $\Delta stk-1$

Macrophage Infection

Significant difference in total cfu at 10 hours post infection

Summary

- *Bacillus anthracis* is sensitive to an inhibitor of c-Jun N-terminal kinase (JNK)
- JNK inhibitor is bactericidal to *B. cereus* and *B. subtilis*, but not against a range of other organisms
- Frequency of resistance is low, and requires multiple passages using shallow increases of inhibitor to obtain resistant isolates
- Candidate targets are under investigation using genetic and biochemical approaches
 - Stk-1 (a kinase homologous to JNK) is necessary for growth under nutrient limiting conditions, and intracellular growth in macrophages

Acknowledgements

- Katie Bryant
- Salika Shakir
- Kevin DeGiusti

